32 research outputs found

    Agricultural Internet of Things and decision support for precision smart farming

    Get PDF
    Agricultural Internet of Things and Decision Support for Smart Farming reveals how a set of key enabling technologies (KET) related to agronomic management, remote and proximal sensing, data mining, decision-making and automation can be efficiently integrated in one system. Chapters cover how KETs enable real-time monitoring of soil conditions, determine real-time, site-specific requirements of crop systems, help develop a decision support system (DSS) aimed at maximizing the efficient use of resources, and provide planning for agronomic inputs differentiated in time and space. This book is ideal for researchers, academics, post-graduate students and practitioners who want to embrace new agricultural technologies

    Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy

    Get PDF
    It is widely known that the visible and near infrared (VIS-NIR) spectroscopy has the potential of estimating soil total nitrogen (TN), organic carbon (OC) and moisture content (MC) due to the direct spectral responses these properties have in the near infrared (NIR) region. However, improving the prediction accuracy requires advanced modelling techniques, particularly when measurement is planned for fresh (wet and un-processed) soil samples. The aim of this work is to compare the predictive performance of two linear multivariate and two machine learning methods for TN, OC and MC. The two multivariate methods investigated included principal component regression (PCR) and partial least squares regression (PLSR), whereas the machine learning methods included least squares support vector machines (LS-SVM), and Cubist. A mobile, fibre type, VIS-NIR spectrophotometer was utilised to collect soil spectra (305–2200 nm) in diffuse reflectance mode from 140 wet soil samples collected from one field in Germany. The results indicate that machine learning methods are capable of tackling non-linear problems in the dataset. LS-SVMs and the Cubist method out-performed the linear multivariate methods for the prediction of all three soil properties studied. LS-SVM provided the best prediction for MC (root mean square error of prediction (RMSEP) = 0.457% and residual prediction deviation (RPD) = 2.24) and OC (RMSEP = 0.062% and RPD = 2.20), whereas the Cubist method provided the best prediction for TN (RMSEP = 0.071 and RPD = 1.96)

    Towards the development and verification of a 3D-based advanced optimized farm machinery trajectory algorithm

    Get PDF
    Efforts related to minimizing the environmental burden caused by agricultural activities and increasing economic efficiency are key contemporary drivers in the precision agriculture domain. Controlled Traffic Farming (CTF) techniques are being applied against soil compaction creation, using the on-line optimization of trajectory planning for soil-sensitive field operations. The research presented in this paper aims at a proof-of-concept solution with respect to optimizing farm machinery trajectories in order to minimize the environmental burden and increase economic efficiency. As such, it further advances existing CTF solutions by including (1) efficient plot divisions in 3D, (2) the optimization of entry and exit points of both plot and plot segments, (3) the employment of more machines in parallel and (4) obstacles in a farm machinery trajectory. The developed algorithm is expressed in terms of unified modeling language (UML) activity diagrams as well as pseudo-code. Results were visualized in 2D and 3D to demonstrate terrain impact. Verifications were conducted at a fully operational commercial farm (Rostenice, the Czech Republic) against second-by-second sensor measurements of real farm machinery trajectories

    Sensors in Agriculture

    Get PDF
    Agriculture requires technical solutions for increasing production while lessening environmental impact by reducing the application of agro-chemicals and increasing the use of environmentally friendly management practices. A benefit of this is the reduction of production costs. Sensor technologies produce tools to achieve the abovementioned goals. The explosive technological advances and developments in recent years have enormously facilitated the attainment of these objectives, removing many barriers for their implementation, including the reservations expressed by farmers. Precision agriculture and ‘smart farming’ are emerging areas where sensor-based technologies play an important role. Farmers, researchers, and technical manufacturers are joining their efforts to find efficient solutions, improvements in production, and reductions in costs. This book brings together recent research and developments concerning novel sensors and their applications in agriculture. Sensors in agriculture are based on the requirements of farmers, according to the farming operations that need to be addressed

    Intelligent Data Mining and Fusion Systems in Agriculture

    No full text
    ntelligent Data Mining and Fusion Systems in Agriculture presents methods of computational intelligence and data fusion that have applications in agriculture for the non-destructive testing of agricultural products and crop condition monitoring. Sections cover the combination of sensors with artificial intelligence architectures in precision agriculture, including algorithms, bio-inspired hierarchical neural maps, and novelty detection algorithms capable of detecting sudden changes in different conditions. This book offers advanced students and entry-level professionals in agricultural science and engineering, geography and geoinformation science an in-depth overview of the connection between decision-making in agricultural operations and the decision support features offered by advanced computational intelligence algorithms

    Comparison of Deep Neural Networks in Detecting Field Grapevine Diseases Using Transfer Learning

    No full text
    Plants diseases constitute a substantial threat for farmers given the high economic and environmental impact of their treatment. Detecting possible pathogen threats in plants based on non-destructive remote sensing and computer vision methods offers an alternative to existing laboratory methods and leads to improved crop management. Vine is an important crop that is mainly affected by fungal diseases. In this study, photos from healthy leaves and leaves infected by a fungal disease of vine are used to create disease identification classifiers. The transfer learning technique was employed in this study and was used to train three different deep convolutional neural network (DCNN) approaches that were compared according to their classification accuracy, namely AlexNet, VGG-19, and Inception v3. The above-mentioned models were trained on the open-source PlantVillage dataset using two training approaches: feature extraction, where the weights of the base deep neural network model were frozen and only the ones on the newly added layers were updated, and fine tuning, where the weights of the base model were also updated during training. Then, the created models were validated on the PlantVillage dataset and retrained using a custom field-grown vine photo dataset. The results showed that the fine-tuning approach showed better validation and testing accuracy, for all DCNNs, compared to the feature extraction approach. As far as the results of DCNNs are concerned, the Inception v3 algorithm outperformed VGG-19 and AlexNet in almost all the cases, demonstrating a validation performance of 100% for the fine-tuned strategy on the PlantVillage dataset and an accuracy of 83.3% for the respective strategy on a custom vine disease use case dataset, while AlexNet achieved 87.5% validation and 66.7% accuracy for the respective scenarios. Regarding VGG-19, the validation performance reached 100%, with an accuracy of 76.7%

    Leaf Disease Recognition in Vine Plants Based on Local Binary Patterns and One Class Support Vector Machines

    No full text
    Part 7: Optimization-SVM (OPSVM)International audienceThe current application concerns a new approach for disease recognition of vine leaves based on Local Binary Patterns (LBPs). The LBP approach was applied on color digital pictures with a natural complex background that contained infected leaves. The pictures were captured with a smartphone camera from vine plants. A 32-bin histogram was calculated by the LBP characteristic features that resulted from a Hue plane. Moreover, four One Class Support Vector Machines (OCSVMs) were trained with a training set of 8 pictures from each disease including healthy, Powdery Mildew and Black Rot and Downy Mildew. The trained OCSVMs were tested with 100 infected vine leaf pictures corresponding to each disease which were capable of generalizing correctly, when presented with vine leave which was infected by the same disease. The recognition percentage reached 97 %, 95 % and 93 % for each disease respectively while healthy plants were recognized with an accuracy rate of 100 %
    corecore